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Abstract 
Extreme weather and climate phenomena (including extreme temperatures) severely influence ecosystems 
and human society. Impacts of climate change are likely to result rather from changes in climate variability 
and extremes than from an increase in mean temperature which underlines the need for the evaluation of 
extreme events in present climate simulations. Heat-related mortality is examined here as one of the most 
direct impacts of weather extremes on society. The study compares estimates of heat-related total mortality 
in the population of the Czech Republic derived from GCM simulated control climates, statistical 
downscaling from observation, statistical downscaling from GCM, and a WGEN-like weather generator. 
The observed heat-related mortality is reproduced best in stochastic weather generator series; all unadjusted 
GCM outputs as well as the statistical downscaling models underestimate it. If GCMs are resized so that the 
mean and variance of the temperature series equal observed values, they perform almost comparably to the 
weather generator as to mean annual heat-related mortality but still misreproduce its interannual variability. 
Since GCMs and statistical downscaling fail to reproduce most characteristics of heat-related mortality and 
extreme temperature events, a scenario of changes in heat-related mortality should be based on weather 
generator simulations, with parameters of the stochastic model modified according to GCM outputs for a 
perturbed climate. 
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1. Introduction 
Extreme weather and climate phenomena are subjects of investigation because of both their current impacts 
on ecosystems and society and the threat of their possible increases in frequency, duration and severity in the 
climate perturbed by enhanced concentrations of greenhouse gases in the atmosphere. Impacts of climate 
change are expected to result rather from changes in climate variability and extreme event occurrence than 
from an increase in mean temperatures (Parmesan et al., 2000), and even relatively small shifts in the means 
and variances of climate variables can induce considerable changes in the severity of extreme events (Katz 
and Brown, 1992; Colombo et al., 1999). 
General circulation models (GCMs) are currently the most frequently used tool in climate modelling (IPCC, 
2001). They are able to reproduce many features of the observed climate system not only in terms of means 
but also naturally occurring variability; however, they were not designed for simulating local climates and 
their reliability decreases with increasing spatial and temporal resolution required. 
There are several ways of obtaining site-specific daily time series which are to a different extent based on 
GCM outputs; one of them is statistical downscaling. It takes advantage of the fact that GCMs simulate 
large-scale upper-air fields more accurately than the surface local variables (Huth, 1999), and consists in 
identifying in the observed data the relationships between upper-air variables and local surface ones and 
applying them to control and/or perturbed GCM runs. The downscaled time series are fitted to a specific site 
and, if applied to the present climate, can be adjusted to reproduce the original mean and variance. 
Another way of obtaining local series of weather elements is the use of stochastic weather generators 
(Richardson, 1981; Dubrovský, 1997). They produce synthetic time series, replicating the stochastic 
structure of observed variables, including means, variances, autocorrelations and crosscorrelations. In 
simulations of a future climate, the modification of their parameters is either based on GCM outputs or 
defined by incremental scenarios (Wilks, 1992; Dubrovský, 1997). 
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Here we focus on the comparison of estimates of heat-related mortality (HRM) based on climate model 
outputs for the present climate. The analysis was performed for the Czech Republic, with the Prague-Ruzyně 
station temperature series used as a representative one, and the comparison involved the observed, GCM-
simulated (2 models), downscaled (3 models) and stochastically generated (5 versions) series of daily 
maximum air temperature (TMAX) for the period of May to September. 
 
2. Data 
a. GCMs 
Simulations of present climate of two GCMs were used in this study. 
ECHAM3. The ECHAM GCM originates from the European Centre for Medium Range Weather Forecast 
model, modified in the Max-Planck-Institute for Meteorology in Hamburg. Its version 3 is described in 
DKRZ (1993). It has a resolution corresponding to a 2.8° gridstep both in longitude and latitude; years 11 to 
40 of the control run, in which climatological SSTs and sea ice extent were employed, are examined. 
CGCM1. The first version of the Canadian Global Coupled Model is described in Flato et al. (2000). The 
atmospheric component of the model with the 3.75° x 3.75° grid was coupled to the ocean dynamic model. 
Daily data are available for one of three transient climate change simulations for the period 1900-2100, 
which employs an effective greenhouse gas forcing change corresponding to that observed from 1850 to the 
present, and a forcing change corresponding to an increase in CO2 at a rate of 1% per year thereafter until 
2100. The period 1961-1990 was used as a control one. 
Since the downscaled temperatures reproduce the observed means and variances (see below), for a fair 
comparison between direct GCM outputs and statistical downscaling, distributions of GCM-produced 
temperatures were resized to have the observed mean and standard deviation (for the examined period of 
May to September), and both these versions of GCMs (the resized one and non-resized one) were analyzed 
and compared. The standard de-biasing procedure consisted in subtracting the mean of the simulated series, 
multiplying the anomalies by the ratio stdobs / stdmod where stdobs is the observed and stdmod the simulated 
standard deviation, and adding the observed mean. 
Locations of the GCMs grid-points nearest to Prague are shown in Figure 1. 
 
b. Statistical downscaling 
Downscaled temperatures were calculated by the linear regression with stepwise screening from gridded 500 
hPa heights and 1000/500 hPa thickness over the region which covers large portion of Europe and the 
adjacent Atlantic Ocean (for a detailed description of the procedure see Huth, 1999; Huth et al., 2001). The 
relationships between large-scale fields and local daily maximum temperatures were identified in observation 
over the period of May to September and then applied both to observation and control GCM outputs. Two 
possible ways of retaining the variance of the downscaled series, namely the variance inflation (Karl et al., 
1990) and the addition of a white noise process (cf. Wilby et al., 1999, Zorita and von Storch, 1999) were 
applied in downscaling from observation and are compared here (the models are denoted DWI and DWW, 
respectively). As to downscaling from GCMs, inflation of variance was used as a standard procedure; 
downscaling was applied for ECHAM3 (denoted DWE). 
 
c. Stochastic weather generator Met&Roll 
Basic version (WG-BAS). Met&Roll (Dubrovský, 1997) is a WGEN-like (Richardson, 1981) four-variate 
daily weather generator which was designed to provide synthetic weather series mainly for crop growth 
modelling (Dubrovský et al., 2000; Žalud and Dubrovský, 2002). The four variables are daily maximum 
temperature (TMAX), daily minimum temperature (TMIN), daily sum of global solar radiation (SRAD) and 
daily precipitation amount (PREC). Precipitation occurrence is modelled by a first-order Markov chain, 
which is completely determined by two transition probabilities, P01 and P11; precipitation amount on a wet 
day is approximated by a gamma distribution, Γ(α,β). Parameters of the precipitation model (P01, P11, α, β) 
are defined for individual months. Standardized deviations of TMAX, TMIN and SRAD from their mean 
annual cycles are modelled by a tri-variate first-order autoregressive model, AR(1). The means and standard 
deviations, which are used to standardize the three variables, are determined separately for wet and dry days 
and depend on a day of the year (their annual cycles are smoothed by robust locally weighted regression; 
Solow, 1988). Matrices of the AR(1) model, which are derived from the lag-0 and lag-1 correlations among 
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the three standardized variables, are constant throughout the year. A description of this type of the generator 
may be found, e.g., in Wilks (1992) and Katz (1996), and a detailed description of Met&Roll, e.g., in 
Dubrovský (1997) and Dubrovský et al. (2000). 
Modified versions. Three modifications were suggested to improve the reproduction of the high-frequency 
(interdiurnal; adjustments i and ii) and low-frequency (intermonthly; adjustment iii) variability in the 
stochastic weather generator: (i) incorporation of the annual cycle of lag-0 and lag-1 correlations among 
TMAX, TMIN and SRAD in the generator; (ii) use of the 3rd order Markov chain to model precipitation 
occurrence; and (iii) application of the monthly generator (based on an AR(1) model) to fit the 
low-frequency variability. They are more closely described in Kyselý and Dubrovský (2004). 
Not all possible combination of the proposed modifications were examined; the analyzed versions are listed 
in Table 1. ‘A’ in acronym indicates that the annual cycle of correlations was incorporated; ‘3’ denotes the 
higher (3rd) order of the Markov chain in the precipitation occurrence model; and ‘M’ stands for the 
application of the monthly generator. 1000-yr long series simulated, using parameters derived for the 1961-
1990 period, with five versions of the weather generator are examined here. 
 
d. Observations 
Temperature data. The models have been evaluated against observed daily maximum air temperature 
(TMAX) at the Prague-Ruzyně station. Since the GCM and downscaled series span 30 years corresponding 
to 1961-1990, the same period was used in the observed data. 
Mortality data. Daily data on all-cause (total) mortality in the Czech Republic (population of about 10 
million inhabitants) over the 19-year period 1982-2000 were available. Excess daily mortality was 
established by calculating deviations of the observed number of deaths from the expected number of deaths 
for each day of the examined period. The expected number of deaths was computed so that it takes into 
account effects of the long-term trend in mortality (decline during the period under study, mainly due to 
socio-economic and life-style changes which have followed the 1989 ‘Velvet Revolution’), the annual cycle 
(lower mortality in late than early summer, cf. Lerchl, 1998) and the weekly cycle (slightly lower mortality 
on weekends than weekdays); see Kyselý and Kříž (2003) for more details on the standardization procedure. 
A similar method was applied e.g. by Guest et al. (1999), Smoyer et al. (2000) and Whitman et al. (1997). 
Hereafter, the term mortality refers to all-cause mortality (expressed as the number of deaths) in the Czech 
Republic. 
 
3. Methods 
Heat-related mortality (HRM). HRM in the Czech Republic has been examined in several recent papers 
(Kyselý and Kříž, 2003; Kyselý and Huth, 2004). Here, mean observed excess total mortality was set for 1 
°C wide intervals employing the 5-month May to September period (Figure 2); it takes positive values for 
TMAX ≥ 25 °C, and is lowest at TMAX = 18 °C (cf. Keatinge et al., 2000). HRM in each year is then 
defined in two ways, as (i) the sum of excess total mortality on all days with TMAX ≥ 25 °C (HRM25), and 
(ii) the sum of differences between excess total mortality and mean excess total mortality at TMAX = 18  °C 
on all days with TMAX ≥ 19 °C (HRM19). In the latter case, ‘excess’ mortality relates to the optimum 
temperature rather than to the baseline, and ‘excess’ is taken to be zero for the optimum temperature of 18 °C 
(to reduce the influence of sampling variability, the zero level of mortality was set for a 3 °C wide interval 
around 18 °C). HRM19, which comprises all days on which temperature is above the optimum value, is then 
higher than HRM25, which measures mortality on hot days with (mostly) positive deviations of mortality 
from the baseline. 
 
4. Results: estimates of HRM in climate model outputs 
Since the relationship between mean excess mortality and TMAX was set over the period of 1982-2000 
(because of the mortality data available), when mean TMAX was about 1.2 °C higher than in 1961-1990 (the 
period to which climate model outputs relate), simulated mean annual HRM should be lower than observed 
one over 1982-2000. [If observed TMAX in 1961-1990 are additively adjusted by +1.2 °C, ‘reconstructed’ 
mean annual HRM and its standard deviation estimated from observed and adjusted TMAX in Prague in 
1961-1990 are in a good agreement with observed mean annual HRM and its standard deviation for the 
1982-2000 period.] Because of the different periods, HRM estimated from climate model simulations is 
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evaluated against HRM ‘reconstructed’ from observed TMAX in 1961-1990, and not against observed HRM 
in 1982-2000. Although the ‘reconstructed’ estimate of HRM over 1961-1990 neglects any long-term 
acclimatization to heat stress which might take place, it is not an unreasonable approach here since only 
differences against and among models, not absolute values of HRM themselves are focused on. An 
alternative approach, which consists in an additive adjustment by +1.2 °C of all model TMAX outputs, and a 
comparison against observed instead of ‘reconstructed’ HRM, was applied with similar results, too. 
In all model outputs, mean annual HRM, its standard deviation, and maximum and minimum annual values 
over 30 years were estimated from simulated TMAX. In case of the ECHAM3 GCM and statistical 
downscaling from ECHAM3, the estimated values were multiplied by a correction factor for the number of 
days in the May-September period (150 days in ECHAM3 vs. 153 days in observation and all other 
datasets). If TMAX higher then the maximum observed TMAX (i.e. 36 °C) was simulated in a model, the 
estimate of mean excess mortality on this day was based on an extrapolation from mean excess mortalities at 
three highest TMAX (34 °C, 35 °C and 36 °C) for which estimates from the observed data could be made. 
Statistical characteristics of annual HRM estimated from individual models are shown in Table 2 for two 
versions of the HRM estimates, computed as (i) the sum of excess total mortality on all days with TMAX ≥ 
25 °C (HRM25), and (ii) the sum of differences between excess total mortality and mean excess total 
mortality at TMAX = 18 °C (optimum temperature) on all days with TMAX ≥ 19 °C (HRM19). 
Both GCMs grossly underestimate HRM25 and HRM19; if their outputs are resized to preserve the observed 
mean and variance of temperature, the performance is much better. However, the interannual variability of 
HRM25 and HRM19 is strongly overestimated even in the resized outputs of ECHAM3, which leads to the 
occurrence of years with extremely high or low HRM. 
All statistical downscaling models underestimate both mean annual HRM and its variance; nevertheless, 
downscaling from ECHAM3 improves the estimates of HRM compared to the raw GCM output, and yields a 
much more realistic sampling variability of annual HRM even when compared to the resized GCM. The 
reason is a better reproduction of the shape of the distribution of TMAX provided by statistical downscaling 
from ECHAM3. 
The stochastic weather generator, whatever version is considered, is the best model in reproducing HRM 
under present climate conditions; both mean annual HRM and its variance are almost unbiased. It is 
noteworthy particularly for HRM19 where the model’s bias does not exceed 1% in any of the five versions 
examined. Improvements towards more sophisticated models of the weather generator, which incorporate the 
annual cycle of lag-0 and lag-1 correlations, a higher Markov chain order for the precipitation occurrence, 
and the monthly generator, have only negligible (and ambiguous) effects on its performance compared to the 
basic version WG-BAS. 
 
5. Conclusions 
Of the models examined, the five versions of the weather generator are the best five models in reproducing 
statistical characteristics of heat related mortality (HRM). Hence the scenario of possible future changes in 
HRM should be based on the weather generator simulations, with parameters of the stochastic model 
modified according to GCM outputs for a perturbed climate. Since this scenario will not take into account 
effects of a long-term acclimatization, which will moderate or suppress impacts of climate change on HRM, 
and other potential future trends and influences (cf. Davis et al., 2003; Donaldson et al., 2003), it is likely to 
represent, despite the ageing population, an upper estimate of changes in HRM in a future climate. 
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Table 1. List of climate models and their brief specifications. 
class of models acronym specification period examined 

global climate models 
(GCMs) 

ECHAM3 control climate years 11-40 of the 

 CGCM1 transient climate change simulation 1961-1990 
 ECHAM3-r control climate 

temperature outputs resized to preserve 
years 11-40 of the 

 CGCM1-r transient climate change simulation 
temperature outputs resized to preserve 

1961-1990 

statistical downscaling DWI downscaling from observation 1961-1990 

 DWW downscaling from observation 1961-1990 

 DWE downscaling from the ECHAM3 control 
climate 
variance retained by inflation 

years 11-40 of the 

stochastic weather 
generator 

WG-BAS no annual cycle of matrices of AR(1) 
model 
Markov chain order = 1 

1000 yr long 
simulation 

 WG-A annual cycle of matrices of AR(1) model 
incorporated 
Markov chain order = 1 

1000 yr long 
simulation 

 WG-A3 annual cycle of matrices of AR(1) model 
incorporated 
Markov chain order = 3 

1000 yr long 
simulation 

 WG-AM annual cycle of matrices of AR(1) model 
incorporated 
Markov chain order = 1 

1000 yr long 
simulation 

 WG-AM3 annual cycle of matrices of AR(1) model 
incorporated 
Markov chain order = 3 

1000 yr long 
simulation 

control simulation 

the observed mean and variance 
control simulation 

the observed mean and variance 

variance retained by inflation 

variance retained by adding white noise 

control simulation 

monthly generator not used 

monthly generator not used 

monthly generator not used 

monthly generator used 

monthly generator used 
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Table 2. Mean, standard deviation, and maximum and minimum of annual heat-related mortality in the 
Czech Republic estimated from climate model outputs for the present climate (1961-1990). OBS 1982-2000 
denotes observed HRM over the 1982-2000 period, OBS 1961-1990 stands for HRM estimated from 
observed temperature data in Prague for the 1961-1990 period. Maximum and minimum for the stochastic 
weather generator were set from a randomly chosen 30-yr sample. 
 HRM for TMAX>=25 °C HRM for TMAX>=19 °C 

model mean std maximum minimum mean std maximum minimum 
OBS 1982-2000 560.0 202.2 884.2 66.7 1283.3 302.9 1840.1 457.7 
OBS 1961-1990 391.3 164.4 692.8 114.8 996.0 261.4 1462.2 524.9 
ECHAM3 247.6 233.3 892.3 0.0 684.2 394.6 1744.8 138.3 
CGCM1 8.7 9.1 42.3 0.0 183.7 49.9 304.5 101.0 
ECHAM3-r 420.6 353.7 1454.0 9.4 1008.0 507.0 2452.9 295.4 
CGCM1-r 376.4 151.6 778.3 154.0 980.2 211.8 1460.2 615.2 
DWI 316.0 115.4 500.3 90.3 949.3 219.1 1349.0 473.0 
DWW 343.6 105.7 531.6 170.8 957.5 191.9 1255.1 584.7 
DWE 277.3 135.1 634.3 35.9 926.7 226.2 1412.6 445.0 
WG-BAS 385.5 176.0 746.5 148.9 1000.4 249.2 1469.1 598.6 
WG-A 383.8 149.9 658.2 178.2 996.7 211.1 1353.6 660.6 
WG-A3 379.6 155.7 676.9 130.0 991.5 220.5 1433.3 640.3 
WG-AM 388.3 170.7 887.0 117.8 1005.0 249.2 1715.9 657.7 
WG-AM3 388.9 177.2 986.6 100.7 1005.9 255.1 1757.4 599.2 
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Fig. 1.  Location of the nearest GCM gridpoints (bold cross for ECHAM3, thin one for CGCM1). 
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Fig. 2.  Dependence of mean excess total mortality in the Czech Republic (set for 1 °C wide intervals, 
expressed as the number of deaths) on daily maximum temperature. A similar figure for mean excess 
mortality due to cardiovascular diseases is shown for comparison. 
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